Journal of
ALLOYY

The $\mathrm{Bi}(\mathrm{III})$-selenite $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$

H. Effenberger
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, A-1090 Vienna, Austria

Received 28 April 1998; received in revised form 13 July 1998

Abstract

$\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ was synthesized under hydrothermal conditions. The crystal structure was determined from single-crystal X-ray diffraction data $[a=11.012(4) \AA, b=16.231(6) \AA, c=5.640(2) \AA$, space group $A b m 2, Z=4, R 1(F)=0.0390$ for 1430 reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$ and 84 variable parameters]. The $\mathrm{Bi}^{[1+5]}$ atom has one short bond of $2.174(5) \AA$ to an oxo-oxygen atom, the pentagonal-pyramidal coordination figures are edge-connected among each other to form chains. Tetragonal pyramidal $\mathrm{Cu}^{[4+1]} \mathrm{O}_{5}$ polyhedra are corner-connected to $\propto\left[\mathrm{CuO}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ units. Both chains are extended along the c-axis and they are linked by the selenite groups. Probable hydrogen bonds are to oxygen atoms of the selenite group, $\mathrm{O}_{\mathrm{w}} \cdots \mathrm{O}(23)=2.604$ (13) $\AA, \mathrm{O}(23) \cdots \mathrm{O}_{\mathrm{w}} \cdots \mathrm{O}(23)$ $=84.6(6)^{\circ}$. The connection of the Bi atoms and parts of the SeO_{3} groups show topological similarities to $\mathrm{Bi}_{4} \mathrm{Cu}_{3} \mathrm{O}_{6}\left(\mathrm{VO}_{4}\right)_{2}$. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, synthesis; $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, crystal structure; $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, topology; $\mathrm{Bi}_{4} \mathrm{Cu}_{3} \mathrm{O}_{6}\left(\mathrm{VO}_{4}\right)_{2}$, topology

1. Introduction

Bi (III)-selenites are almost unknown. Recently the mineral francisite, $\mathrm{BiCu}_{3} \mathrm{O}_{2} \mathrm{Cl}\left(\mathrm{SeO}_{3}\right)_{2}$, was described and structurally characterized from single-crystal X-ray diffraction data [1]. During the study of the system $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{CuO}-$ $\mathrm{SeO}_{2}-\mathrm{H}_{2} \mathrm{O}$, two modifications of $\mathrm{Bi}_{2} \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{4}$ with the same space-group symmetry but with a different structural topology were isolated [2]. These investigations were continued due to general interest in the stereochemistry of lone-pair elements. The present paper deals with the description of the first hydrated oxo-selenite compound $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. The topological analogy to $\mathrm{Bi}_{4} \mathrm{Cu}_{3} \mathrm{O}_{6}\left(\mathrm{VO}_{4}\right)_{2}$ [3] is discussed.

2. Synthesis and X-ray structure investigation

To synthesize $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ mixtures of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{CuO}$ and $\mathrm{H}_{2} \mathrm{SeO}_{3}$ were inserted into teflon-lined steel vessels. The vessels were kept at 503 K for 3 days and then cooled to room-temperature (cooling rate 1 $\left.\mathrm{K} \mathrm{h}^{-1}\right) .\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ is light-green and pleochroic (light-green to nearly colourless), the orthorhombic bipyramidal crystals are elongated parallel to [001], the morphology is defined by the crystallographic forms $\{100\}$, $\{010\}$ and $\{001\}$. Byproducts are $\mathrm{CuSeO}_{3}-\mathrm{III}, \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)$.
$2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}\left(\mathrm{SeO}_{2} \mathrm{OH}\right)_{2}, \mathrm{Cu}\left(\mathrm{Se}_{2} \mathrm{O}_{5}\right), \mathrm{Cu}_{2} \mathrm{O}\left(\mathrm{SeO}_{3}\right)$-I and II, $\mathrm{Cu}_{4} \mathrm{O}\left(\mathrm{SeO}_{3}\right)_{3}-\mathrm{II}$, and $\mathrm{Bi}_{2} \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{4}$-I and II [2,4-8]. The ratio of the formed compounds changed in different syntheses runs; the huge number of simultaneously obtained phases indicates that at least in parts equilibrium was not reached. Single-crystal chips of $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ were preliminarily investigated by X-ray film methods which gave the Laue symmetry mmm , the reflection condition $h k l: k+l=2 n$ (characteristic for the space groups $A b m m, A b m 2$, and $A b 2 m$) and rough cell parameters. Final lattice parameters were calculated by least-squares refinements of accurate determined 2ϑ values measured on a STOE four-circle diffractometer. Crystal data, details on X-ray data collection and results of structure refinement are given in Table 1.

A trial to solve the structure in the centric space group Abmm failed. For space group $A b m 2$ the atomic coordinates of Bi and Se were derived using a Patterson summation and direct methods. The Cu and O atoms were located by succeeding difference Fourier summations [9,10$]$. The atomic arrangement clearly shows a polar axis in [001] corresponding to the absence of an inversion centre. As expected, H atoms could not be detected experimentally. The crystal structure was refined on F^{2} [10], and neutral-atomic complex scattering functions [11] were used, anisotropic displacement parameters were allowed for all atoms. Final structural parameters are given

Table 1
Details on single-crystal X-ray data collection and structure refinements of $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ on a STOE AED 2 four-circle diffractometer (Mo tube, graphite monochromator, corrections for Lorentz and polarization effects)

a	$11.012(4) \AA$		
b	$16.231(6) \AA$		
c	$5.640(2) \AA$		
V	$1008.1 \AA^{3}$		
Space group	$A b m 2$		
Z	4		
$\rho_{\text {calc }}$	$5.91 \mathrm{~g} \mathrm{~cm}^{-3}$		
Crystal dimensions	$0.03 \times 0.04 \times 0.15 \mathrm{~mm}^{3}$		
Scan speed $(2 \vartheta / \omega$ scan mode $)$	0.9 to $3.6^{\circ} \mathrm{min}^{-1}$		
Scan width $\left(+\alpha_{1}-\alpha_{2}\right.$ dispersion $)$	1.20°		
Maximal variation of intensity	$\pm 0.53 \% ; 3$ standards, 2 h		
Range of data collection	$2^{\circ}<2 \vartheta<70^{\circ}$		
$\mu($ Mo K $\alpha)$	48 mm		
Empirical absorption correction	$\psi-$-scans		
Transmission factors	0.0230 to 0.0747		
Total measured reflection	5163		
Unique reflections (n)	2288		
Reflections with $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)$	1430		
$R 1=\Sigma\left\\|F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| / \sum\right\| F_{\mathrm{o}} \mathrm{o}\right.\right.$	0.0390		
$w R 2=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2}$	0.0876		
$s=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /(n-p)\right\}^{1 / 2}$	0.869		
Variable parameters (p)	84		
Extinction coefficient	$0.00023(5)$		
Max Δ / σ	≤ 0.001		
Flack \times parameter	$0.018(13)$		
Final difference Fourier map	-1.58 to $+1.87 \mathrm{e} \AA^{-3}$		

$w=1 /\left\{\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+\left[0.0387 *\left(\left[\max \left(0, F_{\mathrm{o}}^{2}\right)\right]+2 * F_{\mathrm{c}}^{2}\right) / 3\right]^{2}\right\}$.

Table 3
Selected interatomic bond distances in $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (in \AA)

$\mathrm{Bi}-\mathrm{O}$	$2.174(5)$	$\mathrm{Cu}-\mathrm{O}(22)$	$1.951(8)$	$2 \times$
$\mathrm{Bi}-\mathrm{O}(21)$	$2.362(8)$	$\mathrm{Cu}-\mathrm{O}(11)$	$1.967(13)$	
$\mathrm{Bi}-\mathrm{O}(21)$	$2.411(8)$	$\mathrm{Cu}-\mathrm{O}_{\mathrm{w}}$	$1.968(13)$	
$\mathrm{Bi}-\mathrm{O}(12)$	$2.416(8)$	$\mathrm{Cu}-\mathrm{O}_{\mathrm{w}}$	$2.239(13)$	
$\mathrm{Bi}-\mathrm{O}(12)$	$2.464(9)$			
$\mathrm{Bi}-\mathrm{O}_{\mathrm{o}}$	$2.603(7)$		$\mathrm{Se}(1)-\mathrm{O}(11)$	$1.700(14)$
$\mathrm{Bi}-\mathrm{O}(23)$	$2.881(9)$		$\mathrm{Se}(1)-\mathrm{O}(12)$	$1.710(8)$
$\mathrm{Bi}-\mathrm{O}(11)$	$3.087(6)$			$2 \times$
$\mathrm{Bi}-\mathrm{O}(22)$	$3.520(10)$		$\mathrm{Se}(2)-\mathrm{O}(23)$	$1.674(8)$
		$\mathrm{Se}(2)-\mathrm{O}(22)$	$1.675(9)$	
$\mathrm{O}_{\mathrm{w}} \cdots \mathrm{O}(23)$	$2.604(13)$	$2 \times$	$\mathrm{Se}(2)-\mathrm{O}(21)$	$1.739(9)$

in Table 2. Selected bond lengths are compiled in Table 3. The highest peaks in the final difference Fourier map are in the vicinity of the Bi atoms.

3. Results of structure refinements

In $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ the nearest and next-nearest neighbour environment of the Bi atom is formed by two oxo-oxygen atoms ($\mathrm{Bi}-\mathrm{O}=2.174(5) \AA$ and $2.603(7) \AA$) and four O atoms belonging to selenite groups $(\mathrm{Bi}-\mathrm{O}=$ $2.362(8)$ to $2.464(9) \AA$). The ligands are arranged in a distorted pentagonal pyramid with the shortest bond length towards the apex; the Bi atom is in the centre of the basal plane: the $\mathrm{O}-\mathrm{Bi}-\mathrm{O}$ angles are $71.72(8)^{\circ}$ to $97.4(2)^{\circ}$ between the apex and the O atoms in the basis, and they vary from $65.0(2)^{\circ}$ to $79.8(3)^{\circ}\left(\sum_{n=1}^{5}=365.1^{\circ}\right)$ for cis-

Table 2
Atomic coordinates and equivalent isotropic displacement parameter (in \AA^{2}) [12] for $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (e.s.d.'s in parentheses)

Atom	x	y	z	$U_{\text {equiv }}$		
Bi	0.12179(6)	0.58340(2)	$0.0{ }^{\text {a }}$	$0.01815(11)$		
$\mathrm{Cu}(1)$	0.39624(19)	0.25	0.2569(4)	0.0172(4)		
$\mathrm{Se}(1)$	0.11930(19)	0.25	0.0921(3)	0.0151(3)		
$\mathrm{Se}(2)$	0.35668(12)	0.07360(6)	0.0317(2)	0.0173(3)		
$\mathrm{O}(11)$	0.2205(12)	0.25	0.3197(24)	0.029(3)		
$\mathrm{O}(12)$	0.0351(9)	0.3314(5)	0.1922(14)	0.0220(18)		
$\mathrm{O}(21)$	0.2280(9)	0.0329(5)	0.1665(15)	0.0208(16)		
$\mathrm{O}(22)$	0.4084(9)	0.1301(5)	0.2588(17)	0.0251(19)		
$\mathrm{O}(23)$	0.2927(9)	0.1420(5)	-0.1523(17)	0.0253(18)		
O_{0}	0.0	0.0	$0.3145(19)$	0.021(3)		
O_{w}	0.5659(11)	0.25	0.147(2)	0.017(2)		
${ }^{\text {a }}$ Fixed for definition of origin.						
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Bi	0.01448(16)	0.01771(14)	0.02227 (17)	-0.00413(22)	-0.00284(32)	0.00011(19)
$\mathrm{Cu}(1)$	0.0116(12)	0.0173(7)	0.0226(9)	0.0	0.0001(7)	0.0
$\mathrm{Se}(1)$	0.0134(7)	0.0147(6)	0.0172(6)	0.0	$-0.0016(9)$	0.0
$\mathrm{Se}(2)$	0.0133(6)	0.0152(4)	$0.0234(9)$	$-0.0003(3)$	$0.0014(5)$	-0.0008(4)
$\mathrm{O}(11)$	0.015(6)	0.052(8)	0.022(6)	0.0	0.000(5)	0.0
$\mathrm{O}(12)$	0.022(5)	0.020(4)	0.024(4)	$-0.005(3)$	-0.005(3)	0.005(3)
$\mathrm{O}(21)$	0.024(4)	0.020(3)	0.019(3)	-0.005(3)	0.002(3)	-0.002(4)
$\mathrm{O}(22)$	0.023(5)	0.021(3)	0.031(4)	0.003(3)	-0.013(4)	-0.006(3)
$\mathrm{O}(23)$	0.018(4)	0.021(4)	0.037(5)	0.007(3)	-0.005(4)	-0.002(3)
O_{0}	0.025(7)	0.029(6)	0.009 (5)	0.0	0.0	-0.004(5)
$\mathrm{O}_{\text {w }}$	0.006(5)	0.017(5)	0.028(6)	0.0	-0.001(5)	0.0

arranged oxygen atoms within the basis. The distances from the least-squares plane 7.53(2)x+9.71(3)y+ $2.361(9) z=6.209(17)(x, y, z$ in crystal coordinates) are $+0.469(6)$ to $-0.614(5) \AA$ for the five O atoms defining the basal plane, 0.370 (4) \AA for the Bi atom and $-1.794(5) \AA$ for the apex. This one-sided arrangement of the ligands makes allowance for the space requirements of the stereoactivity of the $6 s^{2}$ lone-pair electrons of the $\mathrm{Bi}(\mathrm{III})$ atom. The gap to further ligands is $0.28 \AA$.

The Cu atom has site symmetry m and the common tetragonal pyramidal $[4+1]$ coordination, $<\mathrm{Cu}-\mathrm{O}>$ within the basal plane is $1.959 \AA, \mathrm{Cu}-\mathrm{O}$ to the apex is $2.239(13) \AA$. The coordination is quite regular, the $\mathrm{O}-\mathrm{Cu}-$ O angles are $86.4(3)^{\circ}$ to $97.6(4)^{\circ}$ for neighbouring and $172.0(4)^{\circ}$ and $172.1(4)^{\circ}$ for trans-arranged ligands. Interactions to further ligands are excluded from discussion due to $\mathrm{Cu}-\mathrm{O} \geq 3.47 \AA$. The distance of the O atoms from the basal least-squares plane (x, y, z in crystal coordinates) $2.70(5) x+5.468(7) z=2.43(0.02)$ varies from $-0.096(7)$ to $+0.090(7) \AA$, that of the Cu atom is $0.047(7) \AA$. The apex and one of the ligands within the basal plane are $\mathrm{H}_{2} \mathrm{O}$ molecules, the three other ligands belong to selenite groups.

The O_{w} atom is located at the mirror plane. The probable hydrogen bonds are to two symmetrically restricted O atoms of selenite groups with $\mathrm{O}_{\mathrm{w}} \cdots \mathrm{O}(23)=$ $2.604(13) \AA$, the small angle $\mathrm{O}(23) \cdots \mathrm{O}_{\mathrm{w}} \cdots \mathrm{O}(23)=$ $84.6(6)^{\circ}$ indicates moderately bent hydrogen bonds. The O_{w} atom has an approximately tetrahedral environment by the two hydrogen atoms and by the two Cu atoms (Fig. 1; program ATOMS [13] was used to prepare the figures). Bond valence calculations support the hydrogen bonding scheme (Table 4). The O_{w} atom needs two covalently bound H atoms to get saturated. The insufficient sum of bond valences reaching the $\mathrm{O}(23)$ atom from the Bi and Se atoms indicates that the $O(23)$ is the acceptor of the hydrogen bond. Bond valences are satisfactory for the other oxygen atoms and range from 1.87 to 2.04 . The two crystallographically different selenite groups have symmetry m and 1 , respectively. The average $<\mathrm{Se}-\mathrm{O}>$ bond distances are 1.707 and $1.696 \AA, \mathrm{O}-\mathrm{Se}-\mathrm{O}$ angles are 96.1(4) to $104.7(4)^{\circ}$.

The $\mathrm{Bi}^{[1+5]} \mathrm{O}_{6}$ coordination figures share edges to form chains parallel to [001]. Considering only the O_{o} ligands [$\left.\mathrm{Bi}_{2} \mathrm{O}\right]$ chains are formed. The O_{o} atoms are located at the two-fold axis, but the $\left[\mathrm{Bi}_{2} \mathrm{O}\right]$ chains have pseudosymmetry 4_{2}. Including next-nearest ligands the one-dimensional structural unit is maintained (Fig. 2(a)). The O_{o} atoms are surrounded by a strongly distorted tetrahedron of Bi atoms with two short and two long $\mathrm{O}_{\mathrm{o}}-\mathrm{Bi}$ bonds. The $\mathrm{Bi}-\mathrm{O}_{\mathrm{o}}-\mathrm{Bi}$ bond angle is increased between the two short $\mathrm{O}_{\mathrm{o}}-\mathrm{Bi}$ bonds to $122.5(5)^{\circ}$ and it is decreased to $94.1(3)^{\circ}$ between the two long $\mathrm{O}_{\mathrm{o}}-\mathrm{Bi}$ bonds. The four other angles are close to those in a regular tetrahedron: 108.8(1) and $109.5(1)^{\circ}$. A slight shift of the O_{o} atom towards to $z=\frac{1}{4}$ would enable a more balanced coordination around both the O_{o} and the Bi

Fig. 1. The crystal structure of $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in a projection on (001).
atoms. Four-coordinated oxo-oxygen atoms, neither belonging to an anion group nor acting as a donor or acceptor of a hydrogen bond, are common in inorganic compounds. The OM_{4} environments sometimes are distorted for $\mathrm{M}=\mathrm{Bi}$; in contrast, the OM_{4} tetrahedron is rather regular for $\mathrm{M}=$ first row transition elements; the distortion seems to be correlated with the coordination numbers, the ionic radii and the valence states of the M atoms.

The CuO_{5} polyhedra share corners to form chains parallel to $[001]$ (Fig. 2(b)). The $\left[\mathrm{Bi}_{2} \mathrm{O}\right]$ chains are connected by the $\mathrm{Se}(1) \mathrm{O}_{3}$ groups to layers along (100).

Table 4
Bond valences (in valence units) calculated according to Ref. [14]. The arrows indicate the multiplicity of contributions to the sum of bond valences

	Bi	Cu	$\mathrm{Se}(1)$	Se(2)	$\Sigma \nu$ (excluding H)
$\mathrm{O}(11)$	$0.06 \downarrow \rightarrow$	$0.46 \downarrow \rightarrow$	$1.35 \downarrow \rightarrow$		1.87
$\mathrm{O}(12)$	$0.38 \downarrow \rightarrow$		$1.31 \downarrow \downarrow \rightarrow$		2.03
	$0.34 \downarrow \rightarrow$				
$\mathrm{O}(21)$	$0.44 \downarrow \rightarrow$			$1.21 \downarrow \rightarrow$	2.04
	$0.39 \downarrow \rightarrow$				
$\mathrm{O}(22)$		$0.48 \downarrow \downarrow \rightarrow$		$1.44 \downarrow$,	1.92
$\mathrm{O}(23)$	$0.11 \downarrow \rightarrow$			$1.45 \downarrow \rightarrow$	1.56
O。	$0.73 \downarrow \rightarrow \rightarrow$				1.92
	$0.23 \downarrow \rightarrow \rightarrow$				
$\mathrm{O}_{\text {w }}$		$0.46 \downarrow \rightarrow$			0.68
		$0.22 \downarrow \rightarrow$			
$\Sigma \nu$	2.68	2.10	3.97	4.10	

Fig. 2. Detail of the crystal structure of $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$; (a) the connection of the coordination polyhedra around the Bi atoms parallel to [001]; (b) the connection of the tetragonal pyramidal CuO_{5} coordination figures parallel to [001].
$\mathrm{Se}(2) \mathrm{O}_{3}$ groups are branched parallel to [100], and they link to the CuO_{5} polyhedra. The largest anisotropies of the principal mean-square atomic displacements were observed for the low coordinated oxygen atoms $\mathrm{O}(11): 0.052,0.022$, $0.015 \AA^{2}, \mathrm{O}(22): 0.042,0.020,0.013 \AA^{2}$ and $\mathrm{O}(23): 0.041$, 0.018, $0.017 \AA^{2}$.

Structurally related to $\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ is the compound $\mathrm{Bi}_{4} \mathrm{Cu}_{3} \mathrm{O}_{6}\left(\mathrm{VO}_{4}\right)_{2}$ [3]. The $\mathrm{Bi}_{2}^{[4+6]} \mathrm{O}$ chains and their connection by VO_{4} tetrahedra in (001) are topologically comparable to the $\mathrm{Bi}-\mathrm{SeO}_{3}$ layers in (100) of the title compound (Fig. 3). However, the coordination of the central oxo-oxygen atom is more regular in the vanadate with the $\mathrm{O}_{\mathrm{o}}-\mathrm{Bi}$ bonds being 2.243 to $2.351 \AA$, and the $\mathrm{Bi}-\mathrm{O}_{\mathrm{o}}-\mathrm{Bi}$ angles ranging from $107.0(5)$ to $111.2(5)^{\circ}$. The two type structures differ mainly in the connection of the layers. In $\mathrm{Bi}_{4} \mathrm{Cu}_{3} \mathrm{O}_{6}\left(\mathrm{VO}_{4}\right)_{2}$, ribbons formed by cornerconnected CuO_{4} squares run parallel to [100]. The ribbon is centered between two Bi -chains with an additional oxo-oxygen atom coordinated to two Cu and two Bi atoms. In the title compound a chain formed by the CuO_{5} polyhedra, the $\mathrm{Se}(2) \mathrm{O}_{3}$ groups and the hydrogen bonds of the $\mathrm{H}_{2} \mathrm{O}$ molecules is the connecting unit centered between four $\mathrm{Bi}_{2} \mathrm{O}$ chains. The cell parameter in the direction of the $\left[\mathrm{Bi}_{2} \mathrm{O}\right]$ chains $\left[\left(\mathrm{Bi}_{2} \mathrm{O}\right) \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}: 5.640(2) \AA\right.$, $\mathrm{Bi}_{4} \mathrm{Cu}_{3} \mathrm{O}_{6}\left(\mathrm{VO}_{4}\right)_{2}: 5.317(2) \AA$] reflects these different structural features.

The three other known $\mathrm{Bi}-\mathrm{Cu}$-selenites show similarities with respect to the individual coordination polyhedra but they feature topologically distinct connections. In the two $\mathrm{Bi}_{2} \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{4}$ modifications $\mathrm{Bi}_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ layers are separated by $\mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{2}$ chains and $\mathrm{Cu}\left(\mathrm{SeO}_{3}\right)_{2}$ layers, respectively. The atomic arrangement in francisite consists of an infinite, three-dimensional framework of $\mathrm{Bi}, \mathrm{Cu}, \mathrm{Se}$ and O atoms, with Cl atoms located within channels.

Fig. 3. The crystal structure of $\mathrm{Bi}_{4} \mathrm{Cu}_{3} \mathrm{O}_{6}\left(\mathrm{VO}_{4}\right)_{2}$ [3] in a projection on (100).

Furthermore, the oxo-oxygen atoms are connected to three Cu atoms and to one Bi atom, while the Bi coordination polyhedra are not linked to each other. For a further discussion of $\left[\mathrm{BiO}_{2}\right]$ and $\left[\mathrm{Bi}_{2} \mathrm{O}_{2}\right]$ layers see Ref. [15].

Acknowledgements

Financial support by JCPDS/ICDD, Newton Square, PA, USA, is gratefully acknowledged. Comments and suggestions from two anonymous reviewers were greatly appreciated.

References

[1] A. Pring, B.M. Gatehouse, W.D. Birch, Am. Mineral 75 (1990) 1421.
[2] H. Effenberger, Acta Chem. Scand. 50 (1996) 967.
[3] G.B. Deacon, B.M. Gatehouse, G.N. Ward, Acta Crystallogr. C 50 (1994) 1178.
[4] H. Effenberger, Z. Kristallogr. 175 (1986) 61.
[5] P.D. Robinson, P.K.S. Gupta, G.H. Swihart, L. Houk, Am. Mineral 77 (1992) 834.
[6] H. Effenberger, Z. Kristallogr. 173 (1985) 267.
[7] G. Meunier, C. Svensson, A. Carpy, Acta Crystallogr. B 32 (1976) 2664.
[8] H. Effenberger, F. Pertlik, Monatsh. Chem. 117 (1986) 887.
[9] T. Debaerdemaeker, G. Germain, S.E. Hull, M. Irwin, P. Main, C. Tate, M. Woolfson, MULTAN86, Computer programs for the automatic solution of crystal structures from X-ray diffraction data, University of York, UK, 1986.
[10] G.M. Sheldrick, SHELXL-93 Program for Crystal Structure Refine ment, University of Göttingen, Germany, 1993.
[11] A.J.C. Wilson, (Ed.), International Tables for Crystallography, Vol. C, Kluwer, Dordrecht, 1992.
[12] R.X. Fischer, E. Tillmanns, Acta Crystallogr. C 44 (1988) 775.
[13] E. Dowty, ATOMS 3.2, A Computer Program for Displaying Atomic Structures, Kingsport, TN 37663, 1995.
[14] N.E. Brese, M. O’Keeffe, Acta Crystallogr. B 47 (1991) 192.
[15] R. Enjalbert, S. Sorokina, A. Castro, J. Galy, Acta Chem. Scand. 49 (1995) 813.

